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The following system of differential equations is 

dx, / dr = f, (r, 11, . . ., x,1 

examined 

(8 = 1, . . .) m) (11 

Here f, (t, x1, . . ., x,) are quasi-periodic functions with respect to t, with periods 

01, - * .I 0,. Consequently !a will be diagonal [ 11 f unctions of periodic functions 

m’s (u,, - * .I %I, Xl, . . ., r,) with periods Ok with respect to variables Uk, i.e., 

j# 0 , Xl, . . ., Xm) = (D’s (t, . . .) t, 21, . . ., x,). 

The following system is examined along with system (1) 

The question of the existence and uniqueness of solutionsof system (2) was examined 

in [2]. In the same place it was shown that the periodic solution of system (2) generates 

quasi-periodic solution of system (1) on the diagonal u1 = u, = . . . = u, = f . In addition 

to these quasi-periodic solutions system (1) may also have quasi-periodic solutions which 

are generated by nonperiodic solutions of system (2). Such solutions arcnot examined. 

Through the use of an analysis, which was proposed by N.P. Erugin for ordinary equa- 

tions [3], to system (2) it is possible to establish, utilizing diagonal uk = t, that if syatein 

(11 has a quasi-periodic solution ‘pk (t) with the frequency base y, then either the functions 

fa will be quasi-periodic with respect to t with a frequency base commensurable with y, or 

they will become quasi-periodic with frequency base y after substitution of %k by cph; in 

this case the functions f, generally speaking also may not be quasi-periodic, or they will 

be quasi-periodic with a frequency base 6, not commensurable with the frequency base y . 

Definition 1. Let (x1’, . . ., 2, ‘) be a fixed point. We will say that the system of 

functions @‘s (ul, . . ., u,, zl, . . ., zm) (9 = 1, . . ., m) depends in a definite manner on 

the variables ulr . . ., un at the point (zlO, . . .,‘I~‘), if just one of the functions 
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h,(g, . . ., u& = 0, (u,, . . ., u,, zr’, . . ., zmO) is not constant 141. 

The sum total of the functions @, (n,, , . ., u,, xl, . . ., 2,) (S = 1, . . ., m) depends 

on the variables y, . . ., u,, in a definite manner if it depends in a definite manner on 

these variables at any point (zt”, , . ., 2,‘). 

Let Q denote the set of those points (zJ+“, . . ., rmo), in which the system of functions 

@. (Ul, . . -, us, q, - - .* r,) does not depend on the variables uk in a definite manner. 

By the method proposed in reference [ 41 it is possible to prove the following: let the func- 

tions @, of system (2) be periodic with respect to the variables ak with respective periods 

Ok. Let 2, = $8 (I+, . . ., un) be a periodic solution of system (2) with periods 8, and let 

the quantities Sk/Ok be irrational. Then (& (ut, . . ., un), . . ., I& (u,, . . ., u,)) E Q 

for MY point (14~“~ . . ., u,,“) (in particular for points (u13, . . ., uno), which are located on 

the diagonal). 

Corollary 1. If the system of functions mD, (u.,, . . ., IL,, q, . . ., 2,) depends on the 

vadables ul, . . ., ua in a determinate manner and if xg = 1p8 (ur, . . ., un) is a periodic 

solution of system (2) with periods 6,, . . ., 6,, then the quantities Sk/ok are rational. 

Corollary 2. If the functions f, (t) in system (1) depend in a determinate manner on the 

varfable t, then the frequency bases of functions fa and of functions q, , which are solu- 

tions of system (1). are commensurable. 

In the following we will consider that the functions @‘s (uI, . . ., u,, x1, . . ., +J 
depend in a determinate manner on the variables y, . . ., IL,. 

Let E, be the Euclidean spaceof quantities I+ . . ., u,. Vector z with components 

21 = z1 (t$ . . ., 4, . . ., Z, = 2, (U,, . . ., U,,), where zk (U1, . . ., Un) are real continu- 

DUS functions, will be called a point m -dimensional metric space N. The metric of this 

l pace is defined by the equation 

P (ZIl 4 = sup (5 (Xi1 - **.q” 
i==l 

Here %I1 and x 
ia 

are components of the vectors zr and zI respectively. We note that 

any solution of eqnations (2) is a point of space N. By means of the equations 

V& (ul# - l *9 un) = p& (% (%7 * * -9 +Jr * l *P zm (ul, - - -9 +J) (k = 1,. . .,m) (3) 

let a8cb point P (q, . . ., q,,) of the apace N be uniquely transformed into another point of 

this space PI (yr, . . ., y,,,). In this case we will say that equations (3) define the point trans- 

formation T of the space N into itself [S]. 
PI 1: TP (4) 

Point P, is obtained from point P by meansof a doable transformation Ta, if P, P Tp,= 

1.2’ (TP ). An analogosm tranafonuatfon, consisting of k -fold successive application of the 

trsnaformstion T, is denoted by T k. 

Definition 2. Point P* will be called a fixed point of the transformation T if the 

$rmsfomation T trsnsfers point P+ into itself, i.e., 

TP* -,P* or zk+ h, . . ., Im) = FL (z1* ht - * *, %),* ..,x,* (*,..,, q) 

(k = i, . . .( m) 
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The sum total of the point8 P (x1, . . ., x&for which p (Ix, P*) < e will be celled 

the u- neighborhood of point P* (q’, . . ,, .v,,,+) 

The fixed point P+ will be called asymptotically atable on a small scale if for any 

point P belonging to a sufficiently small e-neighborhood of P* the condition p (!P%, P*) 

< ek is satisfied, where sk 4 0 as k -r, 00 and max sk -_* 0 as a -V 0. 

The fixed point P* is called unstable if for some e > 0 some, however small, neigh- 

borhood of P+ there are points P which, under successive application of the transformation 

r, exceed the boundaries of the 8 -neighborhood of the fixed point P*. 

The solution 2 (ur, . . ., u,,) = {q (ul, . . ., u,), . . ., a+ (ul, . . ., u,)} of system (Z), 
which satisfies the initial condition 

201 bl", u2 ' * * -9 4 = (21 (QO, %, - * ., Un), . , .) Zm(U1O, I+, . . ., 24&) 

will be denoted by z (u,, . . ., us, ulO, zoJ. 

The vector function 2 (uI, . . ., u,, ulo, zor) will be continuous with respect to all 

variables and its basic properties are expressed by the following equations 

2 (UlO, u2, . . ., +, UlO, 201) = 201 (5) 

It is assumed that each solution of system (2) is defined with respect to II, in the inter 

val [0, tit]. Then the equation 

T (ZOI) = z (01, uz, . . ., u,,, 0, ZOI) 

will be called the Poincar’e- Androuov operator TI for transformation of the hyperplane 

u, = 0 into itself [6]. Solution z (~1, . . ., us, 0, zuJ of system (2) is periodic with respect 

to ur with period 0% and satisfies the equation 

4% u.2, * - *t Un, 0, %I) = zu 

i.e., the initial condition which determines the periodic solution, is the fixed point of the 

Poincark Andronov operator. Conversely, let z,,~ be the fixed point of the operator Tt. Then 

from equation (5) it follows that 

Z (UI+ ml9 Uz7 ..* 9 %f 0, ZoJ = 2 (%+ % U2, * - -Y Un, ulr .Z (017 %s *-*I Unt 09 zol)) - 

= Z (U1 + @lr %r - * as unv 017 z~J (6) 

However, from the periodicity of the right-hand sides of system (2) with respect to u, 

it follows that 
x (UI SW19 u2, * * *, Un, 01, 201) = 2 (u,, u*, . . ., s, 0, zol) 

Therefore it follows from (6) that z (uI, . . ., u,, 0, z,,J is a periodic solution of system 

(2), with respect to ur. In a similar manner it is possible to examine the Poincar&Andronov 

operators T,, . . ., T,. 

Consequently, for system (2) to have aperiodic solution aj (ul, . . ., u,, I(~“, z,$with 

respect to the variable ui with period oi , 
to have fixed points. We write 

it is necessary and sufficient for the operator Ti 

‘j (“lo, uar ‘1, ’ ’ .) UnUlr uj”, ‘oj) = ‘Pj (‘81 . . .) ul) 

Let the operators T,, T,, . . ., T, have fixed points and let ‘pj = cp (j = f, , . ., n), 



706 V. Kh. Khorosakhal 

Then perfodic l olutiona xi with period riti with respect to the variable ui coalesce (by 

virtue of nniquenesn) into one solution z of system (2) periodic with respect to all variab- 

lea t4,. . ., u, with perioda al, , . ., 61, respectively. By the aame token the following 

theorem ia valid. 

Thcorrm. For ayatem (1) to have a quasi-periodic solution generated by a periodic 

solution of eyatem (2) it io ncceeeary and sufficient for the operators T,, . . ., T, to have 

fixed pofntm and for ‘pi = cp (J’ = i, , . ., n), 

Let o > 0 be a aelected amall value. We denote by u,, the set of those points of 

l pce En which are located in the o-neighborhood of the diagonal u1 = u2 = . . . = u,. 

LetM(+..., u,J be some point from the aet uo. If any one coordinate uj -+ 00 , then for 

point Y to remain within uc, it ia neceaaary that all other coordinates ulr ----* 00. 

Definition. The aolution 2 (ui, . . ., un) = {q (u,, . . ., IL,), . . ., 5, (u,, . . ., u,)l 
of Byatom (2) with initial conditions s~(uiO, $9 * . *, u,,) will be referred to as asymptoti- 

cally stable in the aenae of Liapunov if for any E > 0 given in advance, such an r > 0 

can be found that for any other solution Y (a,, . , ., u,,) of system (2) wtth initial conditions 

Y{ (%O, %,, * * .I nn) = xi (UiO, Us, . . .) Un) + hi (u*, . . .) u,) 

where 116 {6,, . . ., 6,J < r (norm in the sense of metric in N ) the following is applicable 

for all finite values f+, . . ., un from the set vc 

IIY (ur, . . ., 4 - z (u,, . . ., 4 < e 
and simultaneously 

IIY (%, * * ** Un) - z (u,, * * ., %Jll -+ 0 for uj -+ 0 

with the condition that (u,, . . ., u,,) E va. 

It is poaaible to show that in the region uo there is correspondence not only between 

periodic solutions and fixed points of the transformation Tit but also correspondence bet- 

ween their atabilities. From Liepunov’s stability of the periodic solution of system (2) 

the atability of the fixed points follows, and conversely (in so far as the periods of solution 

are mul‘tiplsa of tba perioda of ayatem (2)), from the stability of the fixed points of the 

traumformationa Liapunov’s stability of the corresponding periodic solution follows. 
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